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Abstract

We investigate the spectral fluctuation properties of constrained ensembles
of random matrices (defined by the condition that a number NQ of matrix
elements vanish identically; that condition is imposed in unitarily invariant
form) in the limit of large matrix dimension. We show that as long as NQ

is smaller than a critical value (at which the quadratic level repulsion of the
Gaussian unitary ensemble of random matrices may be destroyed) all spectral
fluctuation measures have the same form as for the Gaussian unitary ensemble.

PACS numbers: 05.45.−a, 02.50.Ey, 24.60.Lz

1. Introduction

We investigate the spectral fluctuation properties of the constrained unitary ensembles of
Gaussian-distributed random matrices (CGUE) introduced in [1]. Constrained ensembles
of random matrices deserve interest because they represent entire classes of non-canonical
random-matrix ensembles that were proposed to mimic typical properties of interacting many-
fermion systems more closely than do the canonical ensembles (the Gaussian orthogonal,
unitary and symplectic ensembles) [2]. Examples of constrained ensembles are the embedded
Gaussian orthogonal ensemble [3, 4] and the two-body random ensemble [5–7]. The
constraints essentially require certain matrix elements or linear combinations of matrix
elements to vanish. It is difficult to deal with the constrained ensembles analytically because
they lack the invariance properties that give analytical access to the canonical ensembles.
That difficulty is overcome by imposing the condition of unitary, orthogonal or symplectic
invariance on the constrained ensembles. It is expected that that condition leaves the spectral
fluctuations unchanged (whereas the eigenfunctions acquire the same distribution as for the
canonical ensembles). Here we focus on the case of unitary invariance, i.e., on the CGUE.
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Some spectral properties of the CGUE were exhibited in [1]. In particular, the following
sufficient condition for level repulsion was given. The quadratic level repulsion characteristic
of the Gaussian unitary ensemble (GUE) (the ensemble of Gaussian-distributed unitary random
matrices) also prevails for the CGUE provided that the number NQ of constraints does not
exceed a critical value,

NQ < N crit
Q (1)

with N crit
Q defined in equation (16).

In the present paper, we go beyond [1] and address the spectral fluctuation properties of
the CGUE in the limit of large matrix dimension N � 1. We do so for NQ < N crit

Q . For
NQ = 0 the CGUE coincides with the GUE. For NQ � N crit

Q the form of the constraints does
not seem to permit definitive analytical statements. It has remained an open question to what
extent the spectral fluctuation properties of the CGUE (beyond the statement of sheer level
repulsion) are the same or differ from those of the GUE for 0 < NQ < N crit

Q . We prove the
following.

Theorem. For matrix dimension N � 1 and the number of constraints NQ < N crit
Q (with N crit

Q

defined in equation (16)), the spectral fluctuation measures of the CGUE coincide with those
of the GUE saved for correction terms of order 1/N .

To make the paper self-contained, we collect in section 2 some definitions and results given
in [1]. In section 3, we slightly modify the definition of the constrained ensembles so as to
remove a singularity. In section 4, we discuss the form of the constraints in the limit N � 1.
Our proof is given in section 5. It is based on an approach developed in [8]. Section 6 contains
a discussion. Some technical details are presented in the appendix.

2. Definitions

We consider Hermitean matrices acting on a Hilbert space H of dimension N. For any two
such matrices A and B, we introduce the canonical scalar product in terms of the trace

〈A|B〉 ≡ Tr(AB). (2)

This allows us to define an orthonormal basis of N2 Hermitean basis matrices Bα = B†
α which

obey

〈Bα|Bβ〉 ≡ Tr(BαBβ) = δαβ (3)

and
N2∑
α=1

|Bα〉〈Bα| = 1N, (4)

where 1N is the unit matrix in N dimensions. Any Hermitean matrix H acting on H can be
expanded in terms of the N2 Hermitean basis matrices Bα as

H =
N2∑
α=1

hαBα. (5)

The Gaussian unitary ensemble of random matrices is obtained by assuming that the expansion
coefficients hα are uncorrelated Gaussian-distributed real random variables with mean value
zero and a common variance. For the GUE, the probability density W(H) of the matrix
elements of H has the form

W(H) d[H ] = NGUE exp

(
− N

2λ2
〈H |H 〉

)
d[H ]. (6)
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Here d[H ] is the product of the differentials of all independent matrix elements, NGUE is a
normalization factor and 2λ is the radius of Wigner’s semicircle.

We introduce the constraints by considering two orthogonal subspaces labeled P and
Q with dimensions NP and NQ = N2 − NP , respectively. These are defined in terms of
orthogonal projection operators

P =
NP∑
p=1

|Bp〉〈Bp|, Q =
N2∑

q=NP +1

|Bq〉〈Bq |. (7)

We have

P† = P, Q† = Q, P2 = P,
(8)

Q2 = Q, PQ = 0, P + Q = 1N .

Constraints can be formulated in the form 〈H |Q〉 = 0 for all H. In the CGUE such constraints
are used in unitarily invariant form. The CGUE is defined by the probability density WP of
the matrix elements of H given by

WP(H) d[H ] = NGUE exp

(
− N

2λ2
〈H |H 〉

)
d[H ]

∫
d[U ]

(∏
q

δ

(√
N

2πλ2
〈UBqU

†|H 〉
))

.

(9)

The integral d[U ] extends over the unitary group in N dimensions. The Haar measure of the
unitary group is normalized to one, i.e.,∫

d[U ] = 1. (10)

We diagonalize the matrix H with the help of a unitary matrix V ,

H = V xV †, (11)

where x = diag(x1, . . . , xN) is the diagonal matrix of the eigenvalues. The integration
measure becomes

d[H ] ∝ �2(x) d[x]d[V ], (12)

where dx is the product of the differentials of the N eigenvalues, where d[V ] is the Haar
measure of the unitary group in N dimensions, and where �(x) denotes the Vandermonde
determinant

�(x) =
∏

1�μ<ν�N

(xμ − xν). (13)

Equation (12) shows that eigenvalues and eigenvectors of the CGUE are uncorrelated random
variables. The joint probability distribution PP(x) of the eigenvalues is given by

PP(x) = N0 exp

(
− N

2λ2
〈x|x〉

)
�2(x)FP(H), (14)

where

FP(H) ≡
∫

d[U ]

(∏
q

δ

(√
N

2πλ2
〈Bq |UHU †〉

))

=
∫

d[U ]

(∏
q

δ

(√
N

2πλ2
〈Bq |UxU †〉

))
(15)
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is a function of the eigenvalues {xμ} only, and where N0 is another irrelevant normalization
factor. Comparison of equations (6) and (9) shows that the eigenvalue distribution of the CGUE
differs from that of the GUE by the factor FP(H). GUE-type level repulsion is contained
in the factor �2(x) in equation (14), and such level repulsion will prevail also in the CGUE
unless FP(H) is singular whenever two eigenvalues coincide. In [1] it was shown that FP(H)

cannot be singular if the number NQ of constraints obeys the inequality

NQ < N crit
Q = N(N − 1)/2 −

J∑
j=1

Lj(Lj − 1)/2. (16)

Here it is assumed that the matrix B = ∑
q sqBq with real coefficients sq possesses

asymptotically (all sq large) J sets of degenerate eigenvalues with multiplicities Lj , j =
1, . . . , J .

3. Modified form of the constraints

The function FP(H) embodies the constraints. Therefore, it is the central object of study in
this paper. The treatment of FP(H) simplifies when all confining matrices Bq are traceless.
We believe that that case is physically the more interesting one, for the following reason. We
show in the appendix that whenever the Bq s are not traceless, there always exists an orthogonal
transformation of the set {Bq} to a new set {B̃q} such that FP(H) is unchanged and that all B̃q

with q > NP + 1 are traceless. The one constraining matrix B̃NP +1, that is not traceless, is the
sum of a traceless part and of a multiple of the unit matrix. But constraining H with a multiple
of the unit matrix means that we constrain the centroid of the spectrum of H. We cannot think
of a physically interesting situation where such a constraint would be meaningful. This is why
we focus attention on the case where all Bq are traceless,

〈Bq〉 = 0 for all q = NP + 1, NP + 2, . . . , N2, (17)

and treat the more general case where condition (17) is violated, in the appendix. Here and in
the following we use the symbol 〈A〉 to denote the trace of the matrix A. This is consistent
with definition (2).

For the developments in section 5 we note the following properties of FP(H). The function
FP(H) is real (this follows from equation (15)) and positive definite (this is seen when we
write the defining delta functions as limits of Gaussians). Using Fourier transformation, we
can write FP(H) in equation (15) as an NQ-fold Fourier integral,

FP(H) =
(

λ2

2πN

)NQ/2 NQ∏
q=1

∫
dsq

∫
d[U ] exp{i〈B(s)|UHU †〉}, (18)

where

B(s) =
∑

q

sqBq (19)

and where s stands for the set {s1, . . . , sNQ
}. The integral over the unitary group can be worked

out and with ds = ∏
q dsq yields (see [1])

FP(H) ∝
(

λ2

2πN

)NQ/2 ∫
ds

det exp{ixμbν(s)}
�(x)�(b(s))

. (20)

Here the bν(s) are the eigenvalues of the matrix B(s), and �(b) is the Vandermonde
determinant of the bν(s), see equation (13). In [1] it was shown that the integrals over s

4
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converge if condition (16) is met. Moreover, inspection of equation (20) shows that FP(H) is
not singular when two eigenvalues xμ, xν coincide.

However, because of the form of the constraints (equation (15)), the function FP(H) is
singular when all eigenvalues of H coincide. To see this we define

H̃ = H − 1N

N
〈H 〉, (21)

use assumption (17) and rewrite equation (18) in the form

FP(H) = FP(H̃ ) =
(

λ2

2πN

)NQ/2 ∫
ds

∫
d[U ] exp{i〈B(s)|UH̃U †〉}. (22)

Equation (22) shows that FP(H̃ ) is singular when H̃ = 0, i.e., when all eigenvalues of H
coincide. The singularity mirrors a singularity in definition (15) of FP(H). Indeed, when
xμ = xν = y for all μ, ν = 1, . . . , N , the Dirac deltas in definition (15) take the form
δ(y〈Bq〉). Because of equation (17) each of these terms is singular. We avoid the singularity
by modifying the definition of FP(H̃ ). Instead of FP(H̃ ), we consider the constraining
function

F̃P(H̃ ) =
( 〈H̃ 2〉

Nλ2

)NQ/2

FP(H̃ ). (23)

The factor in front of FP(H̃ ) guarantees that F̃ P(H̃ ) is not singular at H̃ = 0. At the same
time, that factor is a function of the sum of the eigenvalues xμ only. Thus, that factor cannot
modify the correlations of close-lying eigenvalues xμ, and the spectral fluctuation properties
of the constrained ensembles defined by the constraining functions FP(H̃ ) and F̃P(H̃ ) are the
same. Moreover, for real xμ the function F̃P(H̃ ) is real and positive definite. According to
equation (20), F̃P(H̃ ) is not singular for finite values of the xμ. Inspection shows that when
one of the eigenvalues, xμ say, tends to infinity, F̃P(H̃ ) cannot grow more strongly than some
power of xμ. That growth is much weaker than the Gaussian suppression of large eigenvalues
in equation (9). Hence, the confinement of the spectrum to a finite interval characteristic of
the GUE persists also for the CGUE with constraining function F̃ P(H̃ ) although the shape of
the average spectrum may be modified.

Collecting everything, we have

F̃ P(H̃ ) =
( 〈(H̃ )2〉

2πN2

)NQ/2 ∫
d[U ]

∫
ds exp{i〈UB(s)U †|H̃ 〉}. (24)

It is convenient to introduce the new variables tq = λsq . Then

F̃P(H̃ ) =
( 〈(H̃ )2〉

2πλ2N2

)NQ/2 ∫
d[U ]

∫
dt exp{i〈UB(t)U †|(H̃ /λ)〉}. (25)

This shows that F̃P(H̃ ) depends on H̃ only via the dimensionless ratio H̃ /λ, as expected.
Because of unitary invariance, F̃P(H̃ ) can depend only on unitary invariants constructed from
H̃ /λ. The only such invariants are the normalized traces of H̃ n/λn with positive integer n.
For N � 1 this is shown explicitly in the following section. The probability density for the
Hamiltonian matrices of the CGUE is given by

W̃P(H) d[H ] = Ñ exp

(
− N

2λ2
〈H |H 〉

)
F̃P(H̃ ) d[H ]. (26)

The substitution of FP(H̃ ) by F̃ P(H̃ ) also modifies the normalization factor of W̃P but that
is irrelevant for what follows.
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4. Asymptotic form of F̃ P (H̃) for N � 1

For N � 1 we now display explicitly the dependence of F̃ P(H̃ ) on the normalized unitary
invariants (1/N)〈H̃ n/λn〉 with positive integer n. We mention in passing that the terms
of leading order in a systematic expansion of F̃P(H̃ ) in powers of NQ/N2 can also be
obtained from the Harish–Chandra–Itzykson–Zuber integral [9, 10], or from the standard
supersymmetry approach [11, 12]. We use assumption (17) and discuss the case where not
all constraining matrices are traceless in the appendix. Then 〈B(t)〉 = 0. We consider the
expressions ∫

d[U ](i〈(H̃ /λ)|UB(t)U †〉)k (27)

with k positive integer. Such expressions are generated when the exponential in equation (25)
is expanded in a Taylor series. To calculate the integral over the unitary group we use a
method valid for N � 1 [13, 14]. To leading order in 1/N the integral can be done using
Wick contraction on the matrices U, the rules being

UμνU
†
ρσ → (1/N)δμσ δνρ and UμνUρσ → 0. (28)

Terms of higher order are obtained in a similar fashion and lead to similar results but are
not considered here. We first look at a few simple cases. For k = 1 expression (27)
vanishes. For k = 2 and k = 3 we obtain (i2/N)[(1/N)〈(H̃ /λ)2〉]〈B2(t)〉 and
2!(i3/N)2[(1/N)〈(H̃ /λ)3〉]〈B3(t)〉, respectively. For k = 4 Wick contraction generates two
terms. One is proportional to the square of the k = 2 term just considered. The other is
given by 3!(i4/N3)[(1/N)〈(H̃ /λ)4〉]〈B4(t)〉. For k = 5, Wick contraction generates two
types of terms: the product of the k = 2 term and the k = 3 term, and a new term given by
4!(i5/N4)[(1/N)〈(H̃ /λ)5〉]〈B5(t)〉.

For the general expression (27) we consider all partitions of k into sets of positive
integers k1, k2, . . . , kf greater than unity such that

∑f

i=1 ki = k. To leading order in 1/N ,
expression (27) is given by the sum over all such partitions, the contribution of each partition
being ik

(
k

k1

)(
k−k1

k2

) × · · · × (
k−k1−···−kf −1

kf

) ∏f

i=1(ki − 1)!(1/Nki−1)[(1/N)〈(H̃ /λ)ki 〉]〈Bki (t)〉.
The terms of higher order in 1/N also involve products of traces of powers of H̃ /λ and of
traces of B, the difference being that at least one trace of a power of H̃ /λ is multiplied by at
least two traces of powers of B such that the sum of the exponents of B equals the exponent of
H̃ /λ. It is shown below that 〈Bn〉 and

∏
i〈Bni 〉 with

∑
i ni = n are of the same order in N so

the neglect of such terms is legitimate.
We conclude that to leading order in 1/N , the integral over the unitary group in

equation (25) is given by∫
d[U ] exp{i〈UB(t)U †|(H̃ /λ)〉} = exp

⎧⎨
⎩

∑
n�2

(1/n)(in/Nn−1)[(1/N)〈(H̃ /λ)n〉]〈Bn(t)〉
⎫⎬
⎭ .

(29)

For N � 1 the constraining function F̃ is then given by

F̃P(H̃ ) =
( 〈(H̃ )2〉

2πλ2N2

)NQ/2 ∫
dt exp

⎧⎨
⎩

∑
n�2

(1/n)(in/Nn−1)[(1/N)〈(H̃ /λ)n〉]〈Bn(t)〉
⎫⎬
⎭ .

(30)

It may seem that because of the factors Nn−1 the terms of higher order in n in
equations (29) and (30) can be neglected. We now show that for NQ ∼ N2 this is not the case.

6
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In equation (30), we replace the Cartesian integration variables tq by polar coordinates {r,�}
in NQ dimensions where

r2 =
∑

q

t2
q (31)

and where � stands for the angular variables. We write

B(t) = rB(�) (32)

and since 〈Bq |Bq ′ 〉 = δqq ′ have

〈B2(�)〉 = 1. (33)

Let bμ(�) denote the N real eigenvalues of B(�). Then
∑

μ b2
μ(�) = 1 and |bμ(�)| � 1 for

all μ = 1, . . . , N . For integer n > 2 this implies that

〈Bn(�)〉 � 1. (34)

This, incidentally, justifies the omission of terms of order 1/N above and shows that 〈Bn(�)〉
and 〈(H̃ /λ)n〉 are characteristically different: the first expression is (at most) of order unity
while the second is of order N. That is why we always carry the second expression in the form
(1/N)〈(H̃ /λ)n〉.

Using the transformation to polar coordinates we observe that the term with n = 2 in
equation (30) gives a Gaussian integral in r. Expanding the terms with n > 2 in the exponent
in a Taylor series we are led to consider radial integrals of the form∫

dr rNQ−1+2k exp{−cr2}. (35)

Here c is a constant and 2k must be even as otherwise the integrals vanish. Compared to the
leading term (k = 0) these integrals yield a factor (NQ + 2k − 2)(NQ + 2k − 4) × · · · × NQ.
(We assume for simplicity that NQ is even). If the expansion of the exponential converges
sufficiently rapidly so that for NQ ∼ N2 we need consider only terms with k 
 NQ then every
power of r in the exponential in equation (30) effectively carries a factor

√
NQ, and the series

in n proceeds effectively in powers of NQ/N2. For NQ ∼ N2 that factor is of order unity.
While it is, thus, not permitted to terminate for NQ ∼ N2 the series in n in equation (30)

with the first few terms, rapid convergence of the Taylor expansion of the exponential around
the Gaussian form is assured by the following property of the matrix B(�) defined in
equation (32). Each term in the Taylor expansion of the right-hand side of equation (30)
around the Gaussian form (n = 2) generates a factor of the form∫

d�
∏

i

〈Bki (�)〉, where
∑

i

ki = even = 2k and where all ki � 3. (36)

That expression can also be written as∫
d�

∏
i

N∑
μ=1

bki

μ (�). (37)

In magnitude, each eigenvalue bμ(�) is bounded by unity. It is, therefore, safe to expect that
on averaging over the NQ-dimensional unit sphere, each eigenvalue is of order 1/

√
N so that

the expression in equation (37) is of order N−k�(NQ). Here �(NQ) is the surface of the unit
sphere in NQ dimensions. That shows that only few terms in the expansion are expected to
contribute significantly even for NQ ∼ N2. The statement holds a fortiori for NQ 
 N2.

7
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5. Proof

To calculate the influence of the constraints in equation (26) on the spectrum for N � 1, we
use the approach developed in [8] based on the supersymmetry method [11, 12]. We only
sketch the essential steps, using the definitions and notation of [8, 12]. The average level
density and all correlation functions are obtained with the help of a generating functional Z
which is written as

Z =
∫

d�

〈
exp

{
i

2
�†L1/2GL1/2�

}〉
H

, (38)

where

G = H − E + M. (39)

The average over the ensemble is denoted by the angular brackets with an index H while for
the trace we continue to use angular brackets without index as in equation (2). The symbol �

stands for a supervector the dimension of which depends on the particular correlation function
under study. The same is true of the matrices H (the Hamiltonian), E (the energy) and M.
The matrix M is of order O(N−1) and contains energy differences, source terms and possible
couplings to channels. Differentiation with respect to the source terms generates the particular
correlation function of interest.

The invariance of CGUE under unitary transformations implies that the integrand in
equation (38) depends upon � and �† only via the invariant form

Aαβ = N−1L1/2
αα

N∑
μ=1

�μα�
†
μβL

1/2
ββ . (40)

Here α and β are matrix indices in superspace while μ runs over the N basis states of Hilbert
space H. We introduce a supermatrix σ with the same dimension and symmetry properties as
A by writing Z as an integral over a delta function,

Z =
∫

d�

∫
dσ δ(σ − A)

〈
exp

{
i

2
�†L1/2GL1/2�

}〉
H

. (41)

The delta function is replaced by its Fourier transform, and the multiple Gaussian integral over
the supervector � is performed to yield

Z =
∫

dσ

∫
dτ exp

{
i

2
N trg(τσ )

}〈
exp

{
−1

2
tr trg ln[G − λτ ]

}〉
H

. (42)

The remaining superintegrations over τ and σ are eventually done for N → ∞ with the
help of the saddle-point approximation. Prior to that step, the average over the ensemble is
performed using equation (26). We first integrate over the unitary group. To leading order in
N−1 we obtain〈

exp

{
−1

2
tr trg ln[G − λτ ]

}〉
H

=
〈

exp

{
−1

2
tr trg ln D

}

× exp

{
−1

2
tr trg ln

[
1 +

1

N
tr D−1M

]}〉
H

. (43)

Here D = x − E − λτ is a diagonal in Hilbert space, and the angular brackets now stand for
the remaining integration over the eigenvalues {xμ}. Under inclusion of the terms which arise
from W̃P in equation (26), the exponent of the integrand is given by

−1

2
tr trg ln D − 1

2
tr trg ln

[
1 +

1

N
tr D−1M

]
+ 2

∑
μ<ν

ln|xμ − xν | − N

2λ2

∑
μ

x2
μ + ln F̃P(H̃ ).

(44)

8
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Following [8], we perform the eigenvalue integration using the saddle-point approximation
for N � 1. In expression (44), all terms in the first line are at most of order N while the first
two terms in the second line are of order N2. Omitting the terms in the first line but keeping
ln F̃P(H̃ ) (depending on the value of NQ, that function may or may not be of order N2), we
put the derivatives of the resulting expression with respect to the xμ equal to zero and obtain
the N saddle-point equations

xμ = 2λ2

N

∑
σ 
=μ

1

xμ − xσ

+
2λ2

N

1

F̃ P(x̃)

∂F̃P(H̃ )

∂xμ

, μ = 1, . . . , N. (45)

Without the term ln F̃P(H̃ ) in expression (44), the saddle-point equations would have taken
the standard GUE form

xμ = 2λ2

N

∑
σ 
=μ

1

xμ − xσ

. (46)

To prepare for the treatment of equations (45) we recall how equations (46) are solved in [15].
The variables xμ/λ are replaced by a single dimensionless continuous variable, xμ/λ → ε.
The normalized level density ρ(ε) with

∫
dε ρ(ε) = 1 of the ensemble (which at this point is

an unknown function) is introduced, and equations (46) are written in the form

ε = 2P

∫
dε′ ρ(ε′)

ε − ε′ . (47)

Here P
∫

stands for the principal-value integral. Equation (47) has an electrostatic analogue
and can be solved using the theory of analytic functions. The result is Wigner’s semicirle law
for ρ(ε). The generating functional is subsequently taken at the saddle-point values for the
xμ. All summations over xμ in Z are, thus, replaced by integrations over ε with ρ(ε) as weight
function.

In applying that same method to equations (45) we introduce the (yet unknown) normalized
average level density ρP(ε) of the constrained ensemble in the sum on the right-hand side of
equations (45). We also have to implement the change of variables xμ/λ → ε in F̃P(H̃ ) and
its derivative. As for F̃P(H̃ ), this is done by replacing everywhere in equation (30) the term
(1/N)〈(H/λ)n〉 by 〈εn〉 = ∫

dε εnρP(ε). The form of W̃ (H) in equation (26) implies that
ρP(ε) = ρP(−ε) so that only terms with n even survive, and we obtain

F̃ P =
( 〈ε2〉

2πN

)NQ/2 ∫
dt exp

⎧⎨
⎩

∑
n�1

(1/(2n))((−1)n/N2n−1)〈ε2n〉〈B2n(t)〉
⎫⎬
⎭ . (48)

This is a function of the unknown level density ρP with a rapidly converging Taylor expansion
around the Gaussian term (n = 1). In the derivative of F̃P , we substitute xμ/λ → ε after
differentiating with respect to xμ. We obtain

λ

N

∂F̃P

∂xμ

= NQε

N2〈ε2〉 F̃P +

( 〈ε2〉
2πN

)NQ/2 ∑
n�1

(−)nε2n−1

N2n+1

∫
dt〈B2n(t)〉

× exp

⎧⎨
⎩

∑
n�1

(1/(2n))((−1)n/N2n−1)〈ε2n〉〈B2n(t)〉
⎫⎬
⎭ . (49)

The right-hand side of equation (49) is a polynomial of odd order in ε with rapidly decreasing
coefficients.

As a result, the saddle-point equations (45) take the form of equation (47), with ε replaced
by an odd-order polynomial in ε with rapidly decreasing coefficients. These coefficients
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depend on ρP(ε); the solution to equation (49) must, therefore, proceed iteratively, with
the GUE average level density as a starting point for calculating 〈εn〉. In [1] it was shown
perturbatively that ρ(E) and ρP(E) differ by a term of order NQ/N2. Therefore, we expect
the two level densities to differ significantly when NQ ∼ N2.

Returning to equation (44) we perform the integration over the variables xμ by taking
their values at the saddle points. That means, for instance, that we write

λ

N

∑
μ

1

xμ − E − λτ
→

∫
dE′ ρP(E′/λ)

E′ − E − λτ
. (50)

This is the essential step: the summations over the eigenvalues xμ disappear in all expressions
in the integrand of Z. Each such summation is replaced by an energy integral involving the
level density ρP(ε) of the constrained ensemble. This is the only place where the constraints
show up in the calculation. From here on the calculation of the correlation functions for the
CGUE and that for the GUE run completely in parallel [8]. It follows that all correlation
functions of the CGUE have the same form as their GUE counterparts except that we have
to replace the local average level spacing of the GUE by that of the CGUE. This proves our
theorem.

6. Discussion

Our theorem holds in the limit N � 1 and for NQ < N crit
Q . The average level density of the

CGUE may differ from that of the GUE but all correlation functions have the same form for
both ensembles. Although our result is perhaps expected, to the best of our knowledge this
is the first time that GUE-type statistics has been analytically proved for a class of ensembles
different from the GUE. Deviations of order 1/N from the asymptotic form of the GUE
statistics exist, of course, even for the pure GUE and are expected a fortiori for the CGUE.
Our proof specifically applies to the case of unitary invariance. We believe, however, that a
corresponding result holds also for the other symmetries.

The proof of the theorem rests on the fact that in the limit N � 1 and for NQ < N crit
Q ,

the constraining function F̃ P(H̃ ) is free of singularities. The proof holds independently
of any specific properties of the constraining matrices Bq . What happens for N � 1 but
NQ � N crit

Q ? That seems to depend on specific properties of the constraints which determine
the eigenvalues bμ(s) and, thus, the convergence properties of the integrals over s. Therefore,
generic statements about the spectral fluctuation properties of the CGUE probably cannot be
made for NQ � N crit

Q .
One may speculate that with NQ increasing beyond the value N crit

Q , the spectral fluctuations
of the CGUE remain GUE-like until NP = N2 − NQ is reduced to the value NP = N (where
HP = ∑

p hpBp may be a linear combination of N commuting matrices and, thus, integrable).
But that speculation is surely incorrect. Indeed, random band matrices with a band width less
than or of order

√
N are known [16, 17] to possess localized eigenfunctions and a Poisson

spectrum. For such matrices, the number NQ of constraints is at least of order N2 − N
√

N

and, for N � 1, obviously much larger than NQ but still much smaller than N2 − N .
It is of interest to discuss the embedded random k-body ensembles EGUE(k) (see [3] and

the review [4]) in the light of these considerations. The EGUE(k) models a Fermionic many-
body system with k-body interactions: m identical spinless Fermions occupy l degenerate
single-particle states. The Hilbert space is spanned by N = (

l

m

)
Slater determinants.

To construct the k-body interaction operators, we denote by a†
μ and aμ the creation and

destruction operators for a Fermion in the single-particle state labeled μ with μ = 1, . . . , l.
Let μ1, . . . , μm with 1 � μi � l for all i denote a set of m non-equal integers, and analogously

10
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for ν1, . . . , νm with 1 � νj � l for all j . Then a general interaction operator has the form
A({μi}, {νj }) = ∏m

i=1 a†
μi

∏m
j=1 aνj

. In the Hilbert space of Slater determinants, the N2

Hermitean operators A({μi}, {νj }) + A†({μi}, {νj }) and i[A({μi}, {νj })−A†({μi}, {νj })] play
the very same role as do the matrices Bα introduced in section 2 in the Hilbert space H. From
the general form of A, a k-body operator is obtained by imposing the condition that a subset
of m − k elements of the set {μi} is identically equal to a subset of m − k elements of the set
{νj }. There are

(
l

m

)(
m

k

)(
l−m

k

)
such k-body operators. The EGUE(k) is obtained by writing the

Hamiltonian as a linear combination of all k′-body operators with k′ � k and with coefficients
that are real random Gaussian-distributed variables.

Among the EGUE(k), the EGUE(2) has received particular attention because it mimics
a Hamiltionian with two-body interactions, a form typical for Fermionic many-body systems
like atoms or nuclei. One of the central questions (undecided so far) has been whether for
N � 1 the spectral fluctuation properties of EGUE(2) are GUE-like. Numerical simulations
[4] suggest that the answer is affirmative. However, these simulations are typically done for
small values of l and m, with l around 12 and m around 4 or so. But for these values the
number of one- plus two-body interaction terms is

(12
4

)
[4×8+6×28] = 200

(12
4

)
. The number

of constraints is accordingly given by NQ = (12
4

)
[495 − 200] = (12

4

) × 295. That figure is not
much larger than N crit

Q = (12
4

) × 247, so that it is difficult to draw firm conclusions. It would
be more informative to investigate numerically large values of l and m but that is prohibitively
difficult. For l � m � 1 we have N ≈ lm, and the number of independent two-body
operators is approximately lmm2l2. In other words, there are only m2l2 non-zero interaction
matrix elements in every row and column of the matrix representation of the Hamiltonian for
the EGUE(2), much fewer than for a banded random matrix where that number would be
approximately

√
N = lm/2. Put differently, the number NQ of constraints for the EGUE(2)

is much bigger than it is for a banded random matrix. That fact suggests that mixing in the
EGUE(2) is weaker than it is for a banded random matrix, and that EGUE(2) has Poissonian
level statistics. On the other hand, in a banded random matrix it takes approximately

√
N

different interaction matrix elements to connect two arbitrary states in Hilbert space. In the
EGUE(2) that number is only m/2, i.e., less even than (1/2) ln N . This fact suggests that
mixing of the states in Hilbert space is much more efficient for the EGUE(2) than it is for
a banded random matrix, and the question remains undecided. But the discussion suggests
that for NQ � N crit

Q , the form of the constraints (and not just their sheer number) becomes
important in determining the spectral fluctuation properties of CGUE.

Another frequently used ensemble that simulates the nuclear many-body system is the
two-body random ensemble (TBRE), see [5, 6] and the review [7]. Actually that ensemble
is taken to be invariant under time reversal and, thus, has orthogonal rather than unitary
symmetry. For simplicity we disregard this fact. The single-particle states belonging to a
major shell of the nuclear shell model are occupied by a number of nucleons. The resulting
Slater determinants are coupled to states with fixed total spin J and isospin T and are written
as |JT μ〉. The running index μ has a typical range R from several ten (J large) to several
thousand or more (J small). Level statistics can be meaningfully discussed only for large
R. It is assumed that the interaction between nucleons is of two-body type. Within a major
shell, the number of independent two-body matrix elements vα is small (of order 10 or 102)
compared to the large values of R that are of interest. These matrix elements are taken to be
uncorrelated Gaussian-distributed random variables. This defines the TBRE. For a given set
of states |JT μ〉, the matrix representation of the Hamiltonian HTB of the TBRE takes the form

(HTB)μν =
∑

α

vαCJT
μν (α). (51)
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The matrices CJT
μν (α) are fixed by the major shell and by the quantum numbers J and T under

consideration but have some properties in common with matrices drawn from a canonical
random-matrix ensemble. Again, it is of interest whether in the limit of R � 1 the TBRE
generically obeys GUE (or GOE) level statistics. Numerical results and semi-analytical
arguments both support such a hypothesis. Unfortunately, the matrices CJT

μν (α) are not
accessible analytically so far. Therefore, it does not even seem possible to determine the
number NQ of constraints that would characterize the TBRE matrix (51), and we cannot apply
our results to that ensemble.

The authors of [1] considered not only the CGUE but in addition also what they called
‘deformed Gaussian ensembles’. Here the delta functions in equation (15) are replaced
by Gaussians, and the constraining function FP(H) is everywhere regular. Following the
arguments in section 5 we conclude that the spectral fluctuations of the deformed ensembles
coincide with those of the GUE. In other words, constraints affect the spectral fluctuation
properties only if they constrain the relevant matrix elements to the value zero (and not to very
small non-zero values). As a consequence, in the GUE the transition from GUE to Poisson level
statistics is not a continuous process (where the level statistics would be smoothly deformed)
but actually happens discontinuously. These statements apply on the ‘macroscopic’ level
where the values of the coefficients hq of the constraining matrices Bq are compared with
those of the hp multiplying Bp. If, on the other hand, the hq are measured in units of the
mean level spacing (i.e., in effect, on a scale 1/

√
N compared to the scale of the hp) then

the transition from GUE to Poisson level statistics is expected to be smooth and to allow
for intermediate forms of the level statistics. That expectation is supported by transitions
between symmetries like the GOE → GUE transition, and by many examples of partially
chaotic systems that show intermediate level statistics. We have not attempted to introduce
a correspondingly scaled parametrization for the deformed ensembles. Such a step would be
meaningful only in the immediate vicinity of the transition point from GUE to Poisson level
statistics. That point is not known analytically, however.
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Appendix. Constraining matrices with non-zero traces

It is convenient to relabel the indices q so that they run from 1 to NQ. We use equation (18)
and rotate the basis Bq → B̃q = ∑

q ′ Oqq ′Bq ′ with the help of an orthogonal transformation
Oqq ′ such that B̃1 points in the direction of the unit matrix 1N . Then,

〈B̃q |B̃q ′ 〉 = δqq ′ for all q, q ′,
〈B̃q〉 = 0 for all q > 1.

(A.1)

We apply the same orthogonal transformation to the variables tq so that tq → t̃q = ∑
q ′ Oqq ′ tq ′

and obtain

FP(H) =
(

λ2

2πN

)NQ/2∫ ∏
q

dt̃q

∫
d[U ] exp

(
i
∑

q

t̃q〈B̃q |UHU †〉
)

. (A.2)
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We write B̃1 as the sum of a traceless part and of a multiple of the unit matrix,

B̃1 =
(

B̃1 − 〈B̃1〉1N

N

)
+ 〈B̃1〉1N

N
. (A.3)

By construction, the traceless part is orthogonal to all the B̃q’s with q > 1 and has norm〈
B̃1 − 〈B̃1〉1N

N
|B̃1 − 〈B̃1〉1N

N

〉
= 1 − 1

N
〈B̃1〉2 = α2. (A.4)

Because of the first of equations (A.1), the eigenvalues b1μ with μ = 1, . . . , N of B̃1 obey∑
μ b2

1μ = 1. We maximize 〈B̃1〉 = ∑
μ b1μ under that constraint and find that

−
√

N � 〈B̃1〉 �
√

N. (A.5)

Therefore,

0 � α2 � 1. (A.6)

We define α as the positive root of α2 and write equation (A.3) in the form

B̃1 = αB̂1 + 〈B̃1〉1N

N
. (A.7)

Then, B̂1 has trace zero and norm one. We define B̂q = B̃q for all q > 1 and have

〈B̂q〉 = 0 for all q and 〈B̂q |B̂q ′ 〉 = δqq ′ for all q, q ′. (A.8)

For α = 0 the matrix B̃1 is a multiple of the unit matrix, and the integral over t̃1 in
equation (A.2) yields a multiple of the delta function for 〈H 〉 while the remaining NQ − 1
integrations over the t̃q with q > 1 are treated as in section 4. For α = 1 the matrix B̃1 is
actually traceless; that case was treated in section 4. Therefore, we consider α only in the
open interval

0 < α < 1. (A.9)

We rewrite equation (A.2) by using decomposition (A.7), by rescaling αt̃1 → t̃1, by introducing
spherical polar coordinates {t, �} in NQ dimensions, and by defining the matrix B(�) as

tB(�) =
∑

q

t̃q B̂q . (A.10)

The function FP(H) takes the form

FP(H) =
(

λ2

2πN

)NQ/2 1

α

∫
dt tNQ−1 d� exp(it̃1(t,�)〈B̃1〉〈H 〉/(αN))

×
∫

d[U ] exp(it〈B(�)|UHU †〉). (A.11)

Here t̃1(t,�) stands for the rescaled old integration variable t̃1 as expressed in terms of the
new integration variables {t, �}. The function FP(H) diverges for 〈H 〉 → 0. The divergence
is removed by multiplying FP(H) with [〈H/λ〉2]NQ/2. As in the case of the substitution
FP → F̃ P in section 3, we expect that this step does not affect the spectral fluctuations of the
ensemble. The matrix B(�) is traceless by construction, and the integration over the unitary
group can be carried out as in section 4. From here on we proceed as in section 5.
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